Mutational analysis reveals separable DNA binding and trans-activation of Drosophila STAT92E.

نویسندگان

  • Peter Karsten
  • Iris Plischke
  • Norbert Perrimon
  • Martin P Zeidler
چکیده

In the canonical model of JAK/STAT signalling STAT transcription factors are activated by JAK mediated tyrosine phosphorylation following pathway stimulation by external cytokines. Activated STAT molecules then homo- or heterodimerise before translocating to the nucleus where they bind to DNA sequences within the promoters of pathway target genes. DNA-bound STAT dimers then activate transcription of their targets via interaction with components of the basal transcription machinery. Here we describe a missense mutation in the SH2 domain of the single Drosophila STAT92E homologue which results in an amino-acid substitution conserved in both the canonical SH2 domain and STAT-like molecules previously identified in C. elegans and the mosquito Anopheles gambiae. This mutation leads to nuclear accumulation and constitutive DNA binding of Drosophila STAT92E even in the absence of JAK stimulation. Strikingly, this mutant shows only limited transcriptional activity in tissue culture based assays and functions as a dominant-negative at both the phenotypic and molecular levels in vivo. These features represent aspects of both dominant gain-of-function and dominant-negative activities and imply that the functions of DNA binding can be functionally separated from the role of STAT92E as a transcriptional activator. It is thus possible that an alternative post-translational modification, in addition to tyrosine phosphorylation, may be required to allow STAT to act as a transcriptional activator and suggests the existence of an alternative mechanism by which STAT transcriptional activity may be regulated in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient approach to isolate STAT regulated enhancers uncovers STAT92E fundamental role in Drosophila tracheal development

The ventral veinless (vvl) and trachealess (trh) genes are determinants of the Drosophila trachea. Early in development both genes are independently activated in the tracheal primordia by signals that are ill defined. Mutants blocking JAK/STAT signaling at any level do not form a tracheal tree suggesting that STAT92E may be an upstream transcriptional activator of the early trachea determinants...

متن کامل

GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo.

JAK/STAT signaling is essential for a wide range of developmental processes in Drosophila melanogaster. The mechanism by which the JAK/STAT pathway contributes to these processes has been the subject of recent investigation. However, a reporter that reflects activity of the JAK/STAT pathway in all Drosophila tissues has not yet been developed. By placing a fragment of the Stat92E target gene So...

متن کامل

Genetic Interactions between the Drosophila Tumor Suppressor Gene ept and the stat92E Transcription Factor

BACKGROUND Tumor Susceptibility Gene-101 (TSG101) promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept) develop as enlarged undifferentiated tumors, indicating that the gen...

متن کامل

STAT92E is a positive regulator of Drosophila inhibitor of apoptosis 1 (DIAP/1) and protects against radiation-induced apoptosis.

The proapoptotic factors Reaper, Hid, Grim, and Sickle regulate apoptosis in Drosophila by inhibiting the antiapoptotic factor DIAP1 (Drosophila inhibitor of apoptosis 1). Heat, UV light, x-rays, and developmental signals can all increase the proapoptotic factors, but the control of transcription of the diap1 gene is unclear. We show that in imaginal discs the single Drosophila STAT protein (ST...

متن کامل

A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway.

The JAK/STAT pathway exerts pleiotropic effects on a wide range of developmental processes in Drosophila. Four key components have been identified: Unpaired, a secreted ligand; Domeless, a cytokine-like receptor; Hopscotch, a JAK kinase; and Stat92E, a STAT transcription factor. The identification of additional components and regulators of this pathway remains an important issue. To this end, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular signalling

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2006